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ABSTRACT

A method to rapidly estimate the Fourier power spectrum abiatistribution is presented.
This method relies on a Taylor expansion of the trigonorodtmctions. It yields the Fourier
modes from a number of FFTs, which is controlled by the ordef the expansion and by the
dimensionD of the system. In three dimensions, for the practical value- 3, the number
of FFTs required is 20.

We apply the method to the measurement of the power spectfuamperiodic point
distribution that is a local Poisson realization of an uhdeg stationary field. We derive
explicit analytic expression for the spectrum, which akows to quantify—and correct for—
the biases induced by discreteness and by the truncatibie d&tylor expansion, and to bound
the unknown effects of aliasing of the power spectrum. Wenstiat these aliasing effects
decrease rapidly with the ordéf. For N = 3, they are expected to be respectively smaller
than~ 10~ and0.02 at half the Nyquist frequency and at the Nyquist frequencefgrid
used to perform the FFTs. The only remaining significant sewf errors is reduced to the
unavoidable cosmic/sample variance due to the finite sitleso§ample.

The analytical calculations are successfully checkednegjai cosmologicalV-body ex-
periment. We also consider the initial conditions of thimslation, which correspond to a
perturbed grid. This allows us to test a case where the loaigeBn assumption is incorrect.

Even in that extreme situation, the third-order Fourieyi®a estimator behaves well, with
aliasing effects restrained to at most the percent levehkitine Nyquist frequency.

We also show how to reach arbitrarily large dynamic rangeaunrfer spacei(e., high
wavenumber), while keeping statistical errors in contoglappropriately “folding” the parti-

cle distribution.

Key words: methods: analytical, data analysis, numerical, statisti¢-body simulations —
cosmology: large-scale structure of Universe

1 INTRODUCTION

The power spectrumpP(k), represents the primary tool to char-
acterize the clustering properties of the large scale straof the
universe. Most of major constraints on cosmological modatson
cosmological parameters have been derived from measiiig

or its Fourier transform, the two-point correlation furoeti For in-
stance, the tight constrains derived from WMAP experimelyton
measurements of the power spectrum in spherical harmoanicesp
(e.g, Dunkley et al., 2008); the most significant results from kvea
lensing analysis come from measurements of the two-poimeco
lation function of the cosmic sheag.g, Benjamin et al., 2007; Fu
et al., 2008); the analysis of the power spectrum of absamgines

of lyman-« forest allowed one to infer drastic constraints on the
clustering properties of the matter distribution at smedllss €.g,
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Croft et al., 1999); and, last but not least, the two-pointrela-
tion function and the power spectrum have been used extnsiv
to analyse directly the clustering properties of 2 and 3 disienal
galaxy catalogsd.g, Peebles, 1980; Baumgart & Fry, 1991; Mar-
tinez, 2008, for a recent general review on the subject).

To be able to derive predictions from models of large scale
structure formation, there has been successful attemffitsctoini-
versal dynamical laws, partly phenomenological, that keeskemi-
analytical expressions of the non linear power spectrurth@two-
point correlation function) of the matter distribution. Amg them,
one can cite the nonlinear ansatz of Hamilton et al. (19%ir|
improved by Peacock & Dodds (1996, see also Smith et al.,)2003
Such a non-linear ansatz has been used to constrain modétsiag
observations, particularly in weak lensing survegsy( Benjamin
et al. 2007; Fu et al. 2008). Another well known phenomenickdg
description is the so called halo model, which proposes nbt o
some insights on the clustering properties of the dark mdite
tribution, but also of the galaxy distribution itself (seeg, Ma &
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Fry, 2000; Peacock & Smith, 2000; Seljak, 2000; Scoccimet&d.
2001; see Cooray & Sheth 2002 for an extensive review). Aga
measurement of two-point statistics in the galaxy distidouwas
used to infer important constraints on the halo model patarse
(e.g, Abazajian et al. 2005).

With the advent of very large modern surveys, “precisioncos
mology” has become a reality: the accuracy of the obsemstio
have caught up to the accuracy of the predictions. Thesetods=l
more and more precise to constrain current models of largke sc
structure formation, for instance the fiducialCDM (Cold Dark
Matter) model. It is therefore now crucial to obtain very fiesti-
mates of statistics in simulations with good control of tiistem-
atic errors in order to be able to fine tune non linear ansatta tat
of Hamilton et al. (1991) or details on the set up of the halaeio

In this work, we concentrate on the problem of measuring as
accurately as possible the Fourier modes of a distributiqgoimts
such as those coming from av body simulation, with a partic-
ular emphasis on the power spectrum. The traditional metbod
measuring the Fourier modes,, consists in assigning the point
distribution to a periodic grid with some interpolation med and
then computing. with a Fast Fourier Transform (FFT) technique.
However, the introduction of a grid, combined with the cepend-
ing interpolation, induces two effects: damping of the nwage
large k due to the convolution involved in the interpolation, and
effects of aliasing due to the finite resolution of the gedy, Hock-
ney & Eastwood, 1988). In addition, the discrete nature efgar-
ticle distribution induces some systematic effects, baséhlatter
can be straightforwardly accounted for if the distributiainparti-
cles is a local Poisson processd, Peebles, 1980). While the bias
induced by the interpolation method can also be easily ctede
for, the effects of aliasing are more difficult to control.ithas
been for instance illustrated well by Jing (2005), who psgzbto
correct for aliasing using an iterative method, based onreatz

sion used. That number will control the effects of aliasisgaeell
as the biases on the rough estimator, which can be correatéal f
the case of a local Poisson realization of a stationary nanfileld.
We shall write explicit analytical expressions for the powpec-
trum and propose an unbiased estimator that will be testddtal
against a controlledv-body experiment.

This paper is organized as follows. First we describe what we
call the Fourier-Taylor transform and its practical implemation
(§ 2). Then, we construct a rough estimator of the power spectru
from it, and perform analytical calculation of its ensemalerage
by assuming local Poisson sampling of a stationary randola fie
(§ 3). This section is supplemented with Appendix A, which dis-
cusses some subtle differences between the unconstragmsdsv
the constrained ensemble average, and Appendix B, whicilslet
some useful analytic expressions of various quantitiesiwicg in
the calculations. We study the biases on the rough estirétbe
power spectrum, which can be easily corrected for, as wethas
unknown residuals due to aliasing, which are controlledngydr-
der of the Taylor expansion. The analytic results are thdidated
ina CDMGADGET N-body simulation § 4). We study two config-
urations, the final stage of the simulation, which shoulceagrery
well with the assumption of local Poisson sampling and G-
ity, and the initial conditions, corresponding to a slighterturbed
grid. This section is supplemented with Appendix C, whictads
the calculation of the power spectrum of a randomly pertdidped.
In § 5, we show how to cover all the available dynamic range in
Fourier space while keeping control of the errors, by appabe
foldings of the patrticle distribution. Finally, section @ddfly sum-
marizes the results of this paper.

2 THE FOURIER-TAYLOR TRANSFORM

that assumes that the power spectrum behaves like a power lawye begin with a discrete distribution of poinis with weights

at largek. However this method, although efficient for cosmologi-
cal power spectra which behave close to power laws, is netdfe
biases in general. An alternative route involves using eypate
interpolation functions, which are by construction meantetduce
the effects of aliasing as much as possible. This is for ekate
case of the Daubechies wavelets (Daubechies, 1988), asgawp
by Cui et al. (2008). While these interpolating functions power-
ful, there are still some significant residuals at the fewcpat level,
and Cui et al. (2008) do not provide a rigorous way to quargify
correct them.

The aim of this paper is more ambitious than Jing (2005) and
Cui etal. (2008): we want to be able to measure the powerspect
from a simulation at an arbitrary level of accuracy, withaigus
control of the biases and the residuals due to aliasing. Ofsep
the higher the required level of accuracy, the larger the patar
tional cost. Furthermore, even though we shall be able tcsorea
the power spectrum extremely accurately from a given sitiaria
it does not mean that the power spectrum of the underlyinmobs
ogy will be estimated fairly: a statistical error — cosmiaieace
— arising from the finite number of available modes given thidi
size of the simulated volume will still be presemt.d, Feldman,
Kaiser & Peacock, 1994; Scoccimarro, Zaldarriaga & Hui, %99
Szapudi, 2001; Bernardeau et al. 2002 for a review).

The method we propose is inspired by Anderson & Dahleh
(1996). It is based on the fact that the Taylor series expansf
trigonomic functionssin(x) andcos(x), converges very rapidly.
This will allow us to compute Fourier modes efficiently witham-
ber of FFT depending on the ord&f of the Taylor series expan-

(masses)V;, i = 1,...,N,, where each; is potentially aD-
dimensional vector. The equivalent perturbed density field

Np
p@)= 53 Midpla —a) @
i=1

where dp(x) is the D-dimensional Dirac delta function. The
Fourier transform of this distribution is

/le' p(x) 6[ k-x

Nip ZMZ exp(Ik - xs),

Ok

@

wherek is a D-dimensional wavevector and the imaginary unit is
I? = —1 (we use lower caséas an integer index). Since the num-
ber of dimensions is assumed to be arbitrary the operatds the
scalar product. The direct calculation of the sum in equafid)

is a very slow, anV;, x N, process, whereV,, is the number of
sought wavenumbers.

To speed up the calculation, one can choose a homogeneous
cubic grid of a certain size covering the volume occupiedlbthe
points, N (in 3D, Ny x Ny x Ng),! and define the functiod ()
giving the (vector) integer position of the cell containiobjects.
Then equation (2) becomes

L The following calculations can be easily generalized tataregular grid.
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o = 3o =0 ST Miexp{Tk- i+ A, @
J o ilJ@=j

with

A(i) =z — J(). )

The quantityA(7) (or each coordinate of it in more than 1D) is
bounded if—1/2, 1/2]. To simplify the expressions, it is assumed
without any loss of generality that the size of a cell of thiel gs
unity, A; = 1. The Fourier-Taylor expansion of ordaf is then

5N —N Zexp (Ik-j Z Z M, x [Ik- A(i)]"(5)

n=0 Z\J() 7

Such an expansion is expected to converge very quickly asseeo
quence of properties of trigonometric functiorsy(z) andcos(z).

With D the number of dimensions, and the vecthar =
(A4, -+, Ap), from the multinomial theorem,

> -
7X
q1!><-~~><qD!

g1t tap=n

(k-a) =

x (k1A x -+ x (kpAp)*P (6)
Equation (5) can thus be rewritten
1 — 1
Ny L n _
5k - NPZI Z qllx...qu!X
n=0 q1+-+ap=n
Xkt x - x KIPF(k, q) (7
with
F(k,q) = FT[u) = Zuq )explTk - j, 8)
whereFT is the Fourier operator and
D My [AL@)]® e x [Ap (D)7, ©)

ilJ(i)=3

This defines the Fourier-Taylor algorithm: the approximdirect
Fourier transform is reduced to

(i) the calculation of the momenys,(j) on the the real space
grid, equation (9);

(ii) their Fourier transform, equation (8), which can be -per
formed with usual FFT algorithms;

(iii) their summation with the appropriate weights, eqoat{7).

Note importantly that periodicity was not assumed in thikwea
lation, and that the values of (each coordinate k0fvailable are
theoretically any multiples ofw /N, as a simple consequence of
the periodicity of the functio' (k, ¢) in k space. However, the ac-
curacy of the Taylor expansion is controlled by the magratodl
k- A(4), and thus worsens with largér As a result, we shall re-
strict at present time to the naturally available range d@ies of
(each coordinate of}, [—kuny, kny], Wherek,y, = 7 corresponds
to the Nyquist frequency defined by thed, which isa priori un-
related to the distribution of points. We shall explairgié how to
extend the algorithm to have access to arbitrary valués wofile
maintaining the errors on the Taylor expansion bounded.

Itis crucial to point out a few features of this calculati®irst,
this is very specifically the Fourier transform of a pointtdizution,
which is not precisely equivalent to the transform of angurarly-
sampled continuous function (which requires the furthextca-
tion of an interpolation scheme). Second, if we restrict¢bhku-
lation to a finite set of wavenumbeks there is no unique inverse,
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Table 1. Number of Fourier transformsyppT and the rough estimate of
the error,E(D, N), in the worse case (at the Nyquist frequency) according
to equation (11), as functions of the considered or¥eof the Fourier-
Taylor expansion and the number of dimensidnsf the system.

D=1 D=2 D=3
N Nprr E(1,N) Nrrr E(2,N) Nrrr (3,N)
0 1 1.6 1 3.1 1 4.7
1 2 1.2 3 4.9 4 11
2 3 0.6 6 5.2 10 17
3 4 0.25 10 4.1 20 21
4 5 0.08 15 2.6 35 19
5 6 21102 21 1.3 56 15
10 11 3.610—6 66 7.41073 286 0.6
15 16 6.610 1! 136 4.310°6 816 2.810—3
20 21 2510716 231  5.410~10 1771 2.710=6

and we cannot recover the real-space distribution from theier
transform. Finally, the lowest-orde™M = 0) version of this cal-
culation is equivalent to nearest-grid-point interpaatto theNf
grid.

The algorithm now scales in three dimensions (KEVerT x
N2 log Ng| + O[Nrrr x Ny, for accessingVy, ~ N wavenum-
bers, whereVrrr represents the number of Fourier transforms in-
volved in the calculation. If one assumd§ 2 N7, this method is
much faster than the direct summation approacNifr < NZ.
The parameteNyrr IS given by

Nrpr = EN: >

n=0q1+-+qgp=n

n+ D)!
1= (n+ D)t DI n!) . (10)
Table 1 gives the corresponding numbers o= 1,2 and 3. The
accuracy of the approximation is dictated by the magnitudbe
next order correction in equation (3§ A(i)]N ! /(N+1)!. Errors
become more significant at the Nyquist frequency of the gnidl a
for A(z) ~ 1/2. Atfirst sight, control of the error is thus given by
the condition

E(D,N) = (#D/2)" T /(N +1)! S ¢,

wheree is a small parameter, but of course the actual error depends
on the spectral properties of the system considered. Whdero
N = 10 is enough to have < 10~° for D = 1, we needVN = 15
andN = 20 for D = 2 andD = 3, respectively. For this level of
accuracy, the computational cost becomes increasinglyilptive
for increasing value ob due to the large number of Fourier trans-
forms required to perform the calculations. This makes therier-
Taylor approximation mainly attractive fap = 1 if one aims to
estimate), accurately for any value df. However, the goal here is
not to have an accurate measuremend,obut rather of its power
spectrum. Let us now investigate how the Fourier-Taylorhodt
behaves for this latter quantity.

(11)

3 THE FOURIER-TAYLOR POWER SPECTRUM

This section is divided into two parts. n3.1, we compute the en-
semble average of the naively-defined rough Fourier-Tgybover
spectrum, assuming that the point process under consialeiata
local Poisson realization of a stationary random field,quid over
the grid used to run the Fourier-Taylor algorithm. For imsta we
shall recover a well-known result for nearest grid poinenpbla-
tion (NGP), which corresponds to the zeroth-order Taylquaax
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sion. In§ 3.2, we analyse the various biases in the rough Fourier- limited. Then,

Taylor estimator, namely the shot noise of the particlescvitian

be subtracted off, the bias due to the interpolation metbagl the
famoussinc? biasing from NGP interpolation), which can be easily
corrected for, and the residual due to aliasing. The cdicuia here

do not necessarily assume isotropy of the underlying rangdamsn
cess, but the 3D analyses use angular averages, which mae se
only if isotropy applies.

3.1 Ensemble average for a stationary point process

In what follows, we assume that the catalog is a set of pagiof
equal weights)M,; = 1. A naive estimate of the power spectrum of
order N can be written

PYK) = 5 (N7 670, (12
where
N
NZ SN0 =S explth (G- 30 Y
3,3’ n,m=0
x Yo > [R-AG) [FIR-AG)T, (13)

ilJ(i)=3 &'|J(")=5"

Np = (Np), and(- - -) stands for the ensemble average over many
realizations. Note thus that in the following calculatiove shall
allow the number of objectd/,, in the catalog to fluctuate. Also,
isotropy is not yet assumed hefeis still a vector in equation (12).
Setting

1/2
yn(k)z/ (k- A)"dP A, (14)
—1/2
and
1/2
mntbi =) = [ eli-i+a-a)x
—-1/2
x(k-A)" (k-AY™dPAdPA',  (15)

whereé(x) is the two-point correlation function assumed to be in-
variant by translation, ensemble averaging equation @&)s

N
<N§ 5,§N)692>> = NZoo(k) + >

n,m=0

n—m

T {0

+ N> " expllk- (5= §)] vnm(k,j = 5)}, (16)
3.3
wheredp (k) is the Dirac delta function and is the average num-
ber of particles per cell,

N = N,/Ng. 17)

This calculation can be derived quite easily following theno-
cells formalism of Peebles (1980), as explained in Apperdix
Let us assume periodicity over the grid and decompose the fun
tion &(r) in Fourier modes,

€)=Y PUexp(~I1-7),

—oco<I< oo

(18)

where P(1) is in fact the sought power spectrum. Notice that the
sum (18) is infinite because the system is not necessarilg-ban

1S explik - (G~ 1)) vk~ ) =

53"

S>> PO explIk—1) (G — )] (k) (19)
J,j! —oo<l<oo
with
1/2
Knm(l, k) = / exp[—I1- (A — A" x
—1/2
X(Tk-A)" (=T k-A)Y"dA dA (20)

The sums ovey and;j’ cancel unles$ = k + 2x M, whereM is
an arbitrary (vector) integer. Thus

1" 3 explT - (G = onom (ks — )

43"

NG Pk + 27 M)t (k + 20 M, k). (21)
M
Notice that
Enm(k 4+ 2T M, k) = kn(k, M) X km(k, M), (22)
with
1/2
fon(k, M) = / exp[—1I (k +2nM).A] (I'k-A)"d°A.(23)
—-1/2

Details of the calculation of the (real) numbeg(k, M) are given
in Appendix B. We thus obtain the simple expression

1
PM(k) = 8o(k) + —Wn(k)+
NP
+ Y P(k+ 2mM) T (k, M), (24)
M
with
o~ (kM)
p— Kn )
Tn(k,M) = Z N (25)
n=0
T
Wh(k) = > = vmn (k). (26)
n,m=0
It is easy to check from equations (14) and (23) that
Nlim YTn(k,M)=0op(M), A}im Wn(k) =1, (27)

as expected: the Fourier-Taylor approximation tends toetkect
solution, P(k) + 1/N,,, when the ordelN — oo.

Using the analytical calculations presented in Appendiw8,
recover forN = 0 (corresponding to NGP interpolation), the well-
known result €.g, Jing, 2005)

PO (k) op (k) + NL + 3 P(k+27M) x
M

P

x ] [in(ka/2)/(ke/2+7M,)]*. (28)

q=1,---,D
The bias on the power spectrum introduced by the NGP interpo-
lation corresponds, in the ensemble average sense, to threeFo
transform of the square top-hat function modulo aliasinghef
power spectrum in Fourier space, and can be corrected fightr

(© 0000 RAS, MNRASDO0, 000-000
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Figure 1. Y (k, M) as a function ofk/kny + 2M in the 1D case, for
various values of the ordeN as indicated on the panel. The calculation
has been performed usiny; = 128, but the results would not change
significantly for other values aNg.

forwardly in the band-limited case (where onfy/ = 0 con-
tributes)?

3.2 Analysis of biases and residuals due to aliasing

The problem with equation (24) is the sum owef, as it corre-
sponds to foldings of Fourier modes at valueg:afe do not have
access to for a given grid size. The higher the order consitjéhe
smaller the effect of this aliasing, by construction of thaufter-
Taylor method. This is illustrated in 1D by Fig. 1, which steow
the functionY x (k, M) as a function ofk/kn, + 2M, for vari-
ous orders of the Taylor expansion. One can see that comarge
towards the exact solution (equation 27) is rather fast. affexct
of aliasing is largest when approaching Nyquist frequeacyat-
ural property of the Fourier-Taylor method which is an exgan
aroundk = 0. While it is not possible to correct for aliasing of
the power spectrum without additional strong prior assuomgt it

is possible to estimate a bound on the systematic error itcesl
For instance, let us assume that outside the rénge, , kny| (for

each coordinate of the wavenumber in more than 1D) the power

spectrum is bounded by a valii&,ax:

P(k) € Pmax, outside Nyquist range. (29)

2 Note as well that for pure white nois&,(k) =constant, NGP is unbiased
since) ", 1/(kq/2 + wMq)? = 1/sin?(kq/2).

3 Note that a similar polynomial expansion (or an expansion apn
appropriate basis of functions) to the Taylor expansion tmiimiz-
ing in a global way the effects of the foldings would be more op
timal. One could for instance adapt methods used in the NFFT a
gorithm mww user . t u-chemi t z. de/ ~potts/ nfft/doc. php,
see,e.g, Potts, Steidl & Tasche 2001), potentially more efficiergrthhe
Fourier-Taylor transform. The advantage of this latter et presented
here is the simple analytic control of all the biases.
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This obtains, for example, in the common case of a fallingspen
at high wavenumbers. Then, noticing that (whatever the rauirab
dimensions)

D TR (k, M) = Wi (),

M

(30)

we obtain the following bound (omitting the additional taladdi-
tional term atk = 0)

P (k) — W (k)/Ny

< < max b
P(k) < T2 (5, 0) < P(k) + PmaxRn(k), (31)
where the positive residual functid®y (k) is given by
_ Wn(k)
Ry (k) = 2 (5.0) 1. (32)

Equation (31) defines a range for the estimation of the uebias
power spectrum with the weak assumption given by equatiéh (2
The residualRy (k) estimates the influence of the foldings
of the (unknown) power spectrum at wavenumbers outside the
Nyquist domain defined by the grid. It is expected to decrease
rapidly with orderN, sinceWy (k) ~ Y% (k, 0) when k| /kny <
1: at leading order irk/k.y, after simple algebraic calculations,
one finds, forN > 1,

Wn(k) ~ Tx(k,0) (33)
/2
_%”N“(’“)’ N even (34)
_1\(N+1)/2
= 1_%’4\#1(@7 N odd. (35)

Equation (34) remains valid faN = 0 only for T3(k, 0), while
Wo(k) = 1.

To illustrate quantitatively these results in tihe = 3 case,
Figure 2 shows the angular averages of the biasgg:, 0) — 1,
W (k) — 1 (left panel) and the residudt (k) as functions ofk|
for various values ofV. More specifically, and this will be used fur-
ther for 3D measurements, one estimates for each integevweev
tor kN, /(27) the following quantity

) :E(”“Ng +%)

2
whereE(g:)_is the integer part of. Then, the angular average of
quantity A(k) for integer wavenumber modulusis given by

(36)

A(‘)z% S Ak, (37)
klk(k)=Fk

where the coun€’(k) is

C(k) Z 1. (38)

This gives the number of integer wavenumbers verif;i'uﬁg) =k
Note that angular averages make sense only if one assuntiss sta
tical isotropy, which then means that the power spectrunedep
only on |k|. This is theoretically the case of the cosmological ran-
dom fields considered in this work.

The way the angular average is performed here is very rough,
and itself introduces some biases with respect to the etiaiahe
true angular average of the power spectrum. Implementatian
better angular averaging procedure would be quite striighéard
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Figure 2. Biases on the Fourier Taylor spectruriy? (k,0) — 1|,
|Wix (k) — 1|, and residual functiorR (k) due to aliasing as functions
of k/kny, after angular average as explained in the main text. Theical
lation assumes a grid withVy; = 128, but the results would not change
significantly for other large enough values 8f. Each curve corresponds
to a value of the Taylor expansion ordé¥, ranging fromN = 0to N = 6,
from top to bottom. On the top panel, the solid, dotted ancktgrey curves
correspond td Y3, (k,0) — 1|, |[Wy (k) — 1| and leading order expression
(35), respectively. The cag€ = 0 is omitted, for clarity. In this latter case,
we haveWy(k) — 1 = 0 and|Y3(k,0) — 1| is of the same order (but
slightly different) of what is obtained at first orde¥, = 1.

and easy to propagate in the analytic calculations, but dvoot

serve the purpose of this paper, so we leave it for future Work
Figure 2 shows that the residual functidti (k) decreases

rapidly with V. It is supplemented with Table 2, which provides

4 See,e.g, Scoccimarro et al. (1998), for a better handling of angalar
erages.

Table 2. Numerical estimate in the 3 dimensional case of the resifunat
tion Ry (k) after angular average as explained in the text. The calonlat
has been performed witlV,; = 128 but the results should not change sig-
nificantly for other values ofV; as long as they are not too small. The first
column indicates the ordéY of the Taylor expansion, while the second and
the third one giveR y (kny /2) and R (kny ), respectively.

N Ry (kny/Q) Ry (kny)
0 0.22 1.3
1 0.011 0.17
2 1.31073 0.055
3 5.610~° 0.018
4 2.010-6 221073
5 521078 2.610~%
6 1.110=2  2.010~°

numerical values fok = kny /2 andk = kny. One can already see
the virtue of the Fourier-Taylor method: going to higher erde-
duces these otherwise uncontrollable effects, which aarigl not
negligible at all for the traditional NGP metho@'( = 0) where
the residual is of order unity at the Nyquist frequency aritl st
about 20 percent at half the Nyquist frequency, whereashiing-t
order Fourier-Taylor correction reduces it to about 2 petand
6 x 1075, respectively.

To understand better the scaling of the functidits(k, 0) — 1
and Wx (k) — 1 with k&, one can perform the integral of equa-
tion (14) in a sphere instead of a cube. Eoe= 3, it reads

vn(k) ~ 3_1- (=™ ( 3 )N/3 <M)N

T 2(N+1)(N+3) \4r Ky (39)

This approximation is not accurate enough for practicatwdal
tions, but allows one to see theitx (k) — 1 and Y% (k,0) — 1
scale agk|¥ 2 for N andN + 1, N even. For instance, the second
and third order scale the same way wjith, as can been seen on top
panel of Fig. 2. Note interestingly the bending of the biasaddd

N observed when one approaches the Nyquist frequency: this fo
lows from the fact that the sine function cancel&at k., unlike
the cosine function. Therefore, if one wants to use the biaree
Fourier-Taylor expansion without a bias correction to thsver
spectrum, it is better to perform it at odd orders.

4 VALIDATION: TESTS ON AN N-BODY SIMULATION

In this section, we validate the analytic results derivest pbove
by performing measurements in a CDM-body simulation. The
simulation is described if§ 4.1, where we also explain how we
estimate statistical errors on the measurement of the pepes-
trum. In § 4.2, biases on the Fourier-Taylor rough estimator are
measured and compared to the theoretical predictions ifirtae
stage of the simulation, which should agree well with theiags
tions of local Poisson sampling of a stationary random fiskelin
the previous section. 1§ 4.3, we consider the initial conditions of
the simulation, which correspond to a slightly perturbe gnd
therefore strongly deviate from local Poisson behavianaly, in

& 4.4, we propose a nearly unbiased estimator that should imork
all the cases, disregarding the aliasing effects on the pepec-
trum, which are controlled by the order of the Fourier-Tayda-
pansion as well as the ratio @f/k,, where k,y is the Nyquist
frequency of the grid used to perform the calculations.

(© 0000 RAS, MNRASD00, 000-000
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RAETH

Figure 3. A thin slice, L./128 thick, extracted from the initial conditions and the finaaget of our1283 CDM GADGET simulation. On the left panel,
because of the strong deviations from local Poisson behavaught by the grid pattern, the validity of our calculaiofor the power spectrum biases are
guestionable. On the right panel, the effects of the grichaweh less present, although still visible in underdens®nsg they should have much less impact

on the measurements.

4.1 The CDM GADGET sample

We now validate the above results using a Cold Dark Matter
(CDM) N-body simulation performed with the publicly available
tree codeGADGET (Springel, Yoshida & White, 2001), as shown
in Fig. 3. The parameters of this simulation are the follayvitt
usesN, = 128° particles in a periodic box of sizé = 50 h™"
Mpc, whereh = Hy/(100km/s/Mpc) = 0.7. The cosmological
parameters are matter densiy,, = 0.3 and cosmological con-
stantQ, = 0.7. The linear varianceZ of the density fluctuations
in a sphere of radius h~! Mpc extrapolated to present time was
taken to bers = 0.92. Finally, the softening length was chosen
to be1/20th of the mean interparticle distance. The initial condi-
tions were generated using t@eaphi ¢ package of Berstchinger
(2001), with a transfer function given by Bardeen et al. @9@o
baryons). This package basically allows one to perturb Hialiy
homogeneous particle distribution using the Zel'dovichragima-
tion (Zel'dovich, 1970). For the initial pattern, we choseput the
particles on a regular grid (see left panel of Fig. 3). Out $asnple

is somewhat small compared to contemporary numerical exper
ments, but was chosen such that we could perform “exactutalc
tions of power spectra in a reasonable amount of time. Bytexac
mean the 20th order Fourier-Taylor expansion usingvan= 128
grid. To be able to probe the highly nonlinear regime well &md
make sure that the system has properly relaxed to a localk Po
sonian and isotropic stage in collapsed objects (see rigielpof
Fig. 3), we purposely used a small box size.

The “exact” power spectrum of the particle distribution st
sample is shown in Fig. 4, both for the initial conditions ahd
final stage of the simulation. The smooth curves corresportie
nonlinear ansatz of Hamilton et al. (1991) using the fornufilgea-
cock & Dodds (1996), shown here for reference. The error bars
represented by the gray shadded areas correspond to theifud

(© 0000 RAS, MNRASD00, 000-000

10° T

Present time

1072

107

Initial conditions

P(k)

1078

White noise

107%} \

CDM GADGET sample £\

10710 L ]
1 10
kL/2m

Figure 4. The power spectrum measured in the initial conditions (fowe
curves) and the last snapshot, corresponding to the préiseat(upper
curves), of our1283 CDM GADGET sample. The symbols correspond to
the “exact” measurement with the Fourier-Taylor method afeo 20. A
shaded region is superposed on them. This represents aintieg on the
measurements as computed from equation (40). The smoaih gives the
non-linear ansatz of Peacock & Dodds (1996). The horizathbdted line
corresponds to the white noise level of the particle distigin. Note that
for the measurement at the present time, a correction fotewioise was
performed, but not for the initial conditions measuremditite bending of
the power spectrum at highin the latter case is due to the Hanning filtering
performed in thes aphi ¢ package of Berstchinger (2001).
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self-consistent estimate of the statistical error:

E2 (I_C) — APrOUgh (E) ’

Prough (E)

- OR[Ck) - 1]
X Z (6k6_k)2 — C(]E)Pfough(l_g) ,  (40)

k/k(k)=k
where
Prough (E) = ﬁ Z 6k5—k (41)

k/k(k)=Fk

is the rough power spectrum measured from the distributiqgac
ticles. From now on we omit the cumbersome tildefand bar on

k as we shall only consider angular averages until the endigf th
section. In the framework of an isotropic, stationary loeaisson
process discussed 13, recall that after ensemble averaging over
many realizations

1
(Prown (k) = P(R) + 5 (42)
P
where P(k) is the underlying power spectrum. We noticed that
the error given by equation (40) is well-approximated by ires!-
known result obtained for a random Gaussian field){ Feldman,

Kaiser & Peacock, 1994)

1
C(k)’

which translates, for the desired shot-noise-correctedepspec-

trum to
APN? 1 [

( P ) “om |'T
Here, C'(k) represents the number daftatistically-independent
available wavenumbers, hence the missing factor of two eveth
to the usual case, since symmetrieskispace are already taken
into account. We are a bit puzzled by the very good agreenment b
tween equation (40) and (43), as we would expect non-Gaussia
contributions to the error in equation (40) due to nonlineau-
pling generated by the dynamics. It seems that these c@spéire
rather small, as already noticed by Rimes & Hamilton (2008) a
Hamilton, Rimes & Scoccimarro (2006). Of course, we know for
sure that the error given by equation (40) and (43) undenesé
the true value in general, that would be obtained from therdipn
over many realizations of our simulation (Scoccimarro déaatiaga
& Hui, 1999). However, the realistic calculation of such aroe
requires prior knowledge of the bispectrum and the trispect
Moreover, egs. (40) and (43) are sufficient to prove the gail-
cussed in the analyses of this paper and to provide a roughagst
of errors in a simple and self-consistent way, as can be geavby
the numerical package we propdse.

Due to the very small size of the box, the agreement between
the smooth curves and the measurement on Fig. 4 is not very goo
at large scales (smat)), where few individual modes are available;

BG (k) = (43)

2
N, P(k)

1
N2P2(k)

- (44)

5 For further discussion of statistical errors on the powescsum, in par-
ticular some possible improvements of equation (40) forlacamsistent
calculation of the errors and the covariance matrix of thesnesd power
spectrum, see Hamilton, Rimes & Scoccimarro (2006).

this effect is even worse at the final stage of the simulatien b
cause of the nonlinear coupling at scales close to the stionlaox
size. Note importantly that the choice of a regular pattemigined
with the Zel'dovich approximation for the initial particiistribu-
tion has a non-trivial influence on the evolution of individmodes
(Marcos et al., 2006; Joyce & Marcos, 2007a,b; see also €rocc
Pueblas & Scoccimarro, 2006, who discuss transients cofrong
using the Zel'dovich approximation). Note also that the gamg

of the power spectrum at largemeasured in the initial conditions
is not due to any interpolation effect — as we have accesstbere
an “exact” measurement — but to the Hanning filtering perfedm
in G aphi c (see Bertschinger, 2001). Finally, while a shot-noise
correction was performed on the(k) obtained in the final stage
of the simulationj.e., a term1/N,, was subtracted from the rough
measurement, we reiterate that it does not apply to thaisitage.

In this case, it is more appropriate to perform no correctisrwe
are in the situation of a perturbed grid patteeng, Joyce & Mar-
cos, 2007ay.

4.2 The ideal situation: final, relaxed stage

Figure 5 shows the measured bias on the shot-noise-cairere-
sured Fourier-Taylor power spectrum of ordéy for various values
of N:
(k) — P = W (B)/N, — P(K)

; P(k) '
If the analytic calculations df 3.2 apply, we should have

(45)

2% (k,0) < b(K) S 7% (K, 0) + 225 (W (k) — T2 (k. 0)]. (46)

P(k)

The lower and upper bound are represented by the continualis a
the dotted line respectively. We assugax = P(kny). AS €X-
pected, within the statistical errors defined by equatidd),(the
measurements represented by the symbols indeed lie in betwe
these two curves. Since the true power spectrum is a strategly
creasing function of: in the CDM cosmology, the effects of alias-
ing of the power spectrum are overestimated by the dottedecur
so the symbols are much closer to the solid curve than to the do
ted one. In fact, they overlay quite well on the solid curveewh

is small enough compared tq,,, as expected. Note that the near-
est grid point interpolation (upper left panel) is still yesignifi-
cantly contaminated by aliasing, while this effect decesaspidly
with the orderN as shown in previous section. The bias also be-
comes smaller and smaller wifki, but it is really worth correcting
for, since the theoretical predictions match rather wedlrtreasure-
ments. Note that at high orde¥, > 4, the symbols no longer lie be-
tween the dotted and solid curve, but this is nonethelesswitbin

the statistical errors represented as the shaded regiaedvier, the
system still deviates locally from a pure random statiorzaitern
(right panel of Fig. 3) so one cannot expect the theoretioahd
given by equation (46) to remain valid at such a level of aacyr

4.3 A poor situation: a perturbed grid as in the initial stage

While the final stage of ouGADGET sample is well within the
framework of the assumptions of local Poisson sampling d&a s
tionary random process, this is not the case for the initai-c
ditions, which correspond to a slightly perturbed grid eatt as

6 This can be easily checked by analysing equation (50) whiasghe
power spectrum of a perturbed grid using the Zel'dovich agpnation.
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Figure 5. The measured bias(k) (equation 46), on the rough estimator of the power spectfafi) (k), as a function of: for our CDM GADGET sample
(symbols). Each panel corresponds to a value of the oMegs indicated. The solid and dotted curves represent aetiesrlower and upper bound,
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shown on left panel of Fig. 3. Fig. 6 is the same as Fig. 5, but no
the function measured is

o~ POE) — Prouga (k)
Prough (k) '

In other words, no correction for the shot-noise of the et is
performed since it does not make sense in that case.

Before pushing this analysis further, we have to understand
what is the particle sample at hand. T@eaphi ¢ package per-
turbs an initial grid pattern with a Gaussian random disphaent
field, P(q), supposed to be stationary, isotropic and curl-free. We
assume, to simplify the discussion which follows, that thie gf
particles is the same as the grid used to perform fast Fouiaes-
forms, N, = NS. This is the case for Fig. 6. Remember finally that
lengths are expressed in units of the size of the a cell of tige g

The perturbed position of the particle is given by

(47)

z=s+q+P(q), (48)

whereq is an integer vector for which each coordinate is in the
range[0, Ny — 1], ands is a small constant offset, for which each
coordinate is in0, 1[. Usually,s = 0 or s = (0.5, 0.5, 0.5). The
Fourier mode of the perturbed grid pattern is given by

b = Ni 3 exp{lk-[s +q+ P@)}. (49)

While it is possible to compute the exact power spectrum ohsu
a perturbed grid (Gabrielli, 2004, see Appendix C and equaii0
below), the general calculation for the Fourier-Taylor @xgion is
very cumbersome. However, three interesting regimes céenat
partly be discussed qualitatively:

(i) Very small displacemens;®> = (P?) < 1: in that case, the
value ofs controls the amplitude of the displacemeéx(:) in equa-
tion (5) and therefore the accuracy of the Fourier-Taylgamsion.
The smallers, the better. The worst situation is whempproaches
diagonal valuese.g, s = (0.5,0.5,0.5). Therefore, to best ex-
ploit the Fourier-Taylor method on a very slightly pertudbgrid,
it is wise to choses (and more generally the size of the giid,)
carefully, to minimize as much as possible the amplitudéefdis-
placementg\ (7). In the conventions used here, the wisest choice is
thuss = 0.

(i) Significant displacement;> ~ 1: this is the situation of
Fig. 6, wheres ~ 0.88. In that case, there will be always a large
fraction of particles with large magnitude of the displaesitn\ (),
independently of the choice of the offset

(iii) Large displacementz® > 1: it is difficult in this case to
make any quantitative statements because the conclusépend
on the coherence of the displacement field (see equation 50 be
low). However, one can postulate in general that the infoiona
due to the grid pattern has become subdominant: the padisie
tribution should behave again like the local Poisson ratibin of
an isotropic stationary random process and the calcukidf 3
should in practice become valid again.

From this simple discussion, which could be easily exteridebe
more general cas®,, # N2, one sees that the measurement of the
power spectrum on a perturbed grid has to be performed dbrefu
in order to reduce as much as possible the systematic errors o
the Fourier-Taylor spectrum. However, one expects thesgseto
become significant only when approaching the Nyquist fragye
This is well illustrated by Fig. 6, for which we have
s = (0,0,0) and a mean square displacement of order unity [point
(i) above]: the magnitude of functiog(k) increases quite rapidly

(© 0000 RAS, MNRASD00Q, 000-000

when k/kn, approaches unity. The solid line on each panel still
represents the function; (k,0). The dotted line corresponds to
the right member of equation (46), but wifP,... = 1/N,,.” This
gives a good idea of the overall behavior gffc), and this is not
very surprising. Indeed the calculations of Appendix C (ab®,
e.g, Gabrielli, 2004) give

<5k57k> = 5]3(0) +

1
+ FPZeXp(Ik’-q)exp{—
q

where—1 < p(q) < 1 is the correlation coefficient of the dis-
placement field. From this equation, one sees that for a ratelgr
perturbed grid ¢ < 1), the power spectrum presents a peak at
twice the Nyquist frequency of the grid. The amplitude obtheak

is controlled by the amplitude of the displacements, the value

of o. However, wherk? >> 1/¢2, the sum in equation (50) is dom-
inated by the; = 0 term, hence

k20

3

[1- P(Q)]} ;- (50)

(6k0_g) kK> 1/0°.

This means that at wavenumbers large enough, the rough power
spectrum of the perturbed grid is dominated by the shot noise
the particles. Since ~ 1 in our experiment, this should happen
for k? approaching a few units (except for the peak just mentioned
above at twice the Nyquist frequency of the grid). As a reshk
effects of the aliasing of the power spectrum should be ryugh

the order of the shot noise, which is indeed the case on Fitpe6:
symbols follow roughly the dotted curve, except perhapstifier
nearest grid point case (upper left panel).

Despite the much stronger effects of aliasing on the Fourier
Taylor spectrum for the perturbed grid than for the localbig3o-
nian case, the systematic errors BﬁN)(k) still decrease rapidly
with the order,N. They remain quite moderate whépk., is kept
small enough, for instance/k., < 1/2 for third order, N = 3,
and increase rapidly & approaches the Nyquist frequency.

4.4 Unbiased estimator: a zoom in the rangé0, kny /2]

From equation (31) we can write an angle-averaged estindtor

the true power spectrum:
<P<N>(k:) _ Ry(k) + 1>
7]2\/ (kv O) NP angles .

Recall that the second term of the right side of this equédimsto
be ignored if we consider a perturbed regular pattern sudhitied
conditions of aV-body simulation. We explicitly write the angular
average in this expression, to show how it should be perfdrtae
get the best estimate &f(k). Equation (52) gives the estimator we
propose in that paper.

In the next section, we shall present a procedure to extend th
dynamic range of available values bf which has been restricted
up to now the the Nyquist range of the (arbitrary) samplinigl gr
used to perform the Fourier-Taylor transform. This methaoldlal
low us to control the accuracy of the measurements at all wave
bers, except of course those corresponding to modes clase to
box size. The previous analyses suggest keepiiag away enough

P(N)

est

(k)

(52)

7 and of course withP(k) replaced byP;ougn (k) (with no shot noise
correction).
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Figure 7. A zoom in the region|0, kny /2] of the relative residual,
0P(k)/P(k) = [Peg) — P(k)]/P(k), on the unbiased third-order power
spectrum, as measured in our COBADGET sample. The upper panel cor-
responds to present time, where shot-noise correction efsrmed, while
the lower one corresponds to initial conditions, with notshaise correc-
tion.

from k.y. The choice proposed in this papekis< kny /2. Figure 7
shows the relative residual on the third-order unbiaseidhesbr in
the regionk € [0, kny/2]. Such a residual is well below the statis-
tical errors, of the order of.5 x 10~* and4 x 10~ at most in the
final and the initial stage of the simulation respectivellisTerror,
already small, can be reduced further by increasing therakie
However, it does not make sense to do so as long as the sitisti
errors are dominant: to reduce the statistical errors osédaam-
ple more modes,e., to increase the size of the grid used to perform
the Fourier-Taylor transform. This is discussed in nextisec

5 ARBITRARY WAVENUMBERS WITH CONTROLLED
ERROR

In this section, we show how the dynamical range of availahle
ues ofk can be increased arbitrarily while keeping the statistical
errors and the aliasing effects on the measurements bodeek-
ins et al., 1998).

As shown above, the error on the Fourier-Taylor expansion is
basically controlled by the magnitude kfthis latter has to remain
a small enough fraction of the Nyquist frequency to avoidamc
trollable effects of aliasing and hence to be able to mainsaif-
ficiently low order N. Assuming thab, was computed in a given
range of values of (each coordinate &f)[—akny, akny], o < 1,
one can now consider an arbitrary shift,, such thatk + ks is
outside the available range.g, ks = 2akyny to have access to the
range[akny, 3ckny] in 1D. Equation (2) is rewritten

1
Sk, Fp Z M; exp(Ik - z;) exp(Tks - x;), (53)
— 1 !
= FPZMl exp(1k - x;), (54)
with
M = M; exp(Iks - ;). (55)

One thus obtains, by simple multiplication of the weights by
exp(Iks.z;), @ modification of the Fourier-Taylor algorithm that
gives access to arbitrary values lofwhile maintaining the errors
bounded. Of course, a new set®frr transforms has to be per-
formed for each value of;.

While this method allows us to investigate arbitrary valoés
k, there is still the limitation imposed by the available cartgy
resources. For instance increasing the computing voluwma
cube of side§—kny, kny| t0o @ cube of side$—M kny, M kny]
amounts to a calculation/” times more expensive than for the
original data cube. Instead, one can notice the followirapprty
of Fourier transform in one dimension. Writing

1
o, = Fp Zexp(Qllmi) (56)
1
= N Z exp(2lkx;) +
i,2;€[0,L/2]
1
N > expl2lh(w; — L/2) + kL],  (57)
iz, €[L/2,L]
we can set
r; = 2x;forx; €[0,L/2],
r; = 2x;— Lforz; € [L/2,L]. (58)
We then have
(59)

b = 5 D exp(lhr),

if we assume that L /(2) is an integer; in that casep(/kL) =
1. Similarly one can write

1 .
Oopy1 = Fp Z S(i) exp(Ikri), (60)
where the sign functio'(z) satisfies
SG) = 1, ifz €[0,L/2], (61)
S@G) = -1, ifx; €[L/2, L] (62)
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Table 3.The sampled values &fL/(27) when using the folding procedure
explained in the main text on a grid witN; = 16. The trivial fundamen-
tal casek = 0, is not shown here. From the left column to the right one,
one considers\/ = 0 folding to M = 4 foldings. Each column defines a
range of available values &f As discussed in the text, there can be several
estimates ofP (k) for a given value of. For instance we have 3 estimates
of P(4). To make unknown aliasing effects always negligible in ficac
compared to statistical errors, we impdse kny)/Q, Wherekn]yw) is the
effective wavenumber probed by the Nyquist frequency oftitié after A/
foldings (this is indicated by the mid-horizontal line orttable). To mini-
mize the statistical errorsy/ should then be as small as possible, since this
parameter controls the sparseness of sampling in Fourg@esgo measure
P(4) for instance, one take®/ = 0. In detail, the sampled values bfare
highlighted in bold on the tablés = 1,2,4,6,8,12, 16,24, 32,48, 64;
Fourier space is increasingly sparse sampled Wwitfthis sparse sampling
roughly increases linearly in logarithmic scale, but thdtwiof the bin used

to measureP (k) increases likewise, keeping the number of sampled inde-
pendent mode€’(k) bounded between two valués andC> independent

of the number of foldingsM/, except forM = 0 [hereC; = 98 and

Cy = 210 for D = 3]. As a result, the statistical errors on the power
spectrum measurement remain bounded as well, as illudtogt&ig. 9.

M=0 M=1 M=2 M=3 M=4 C(k)(D=3)
1 2 4 8 16 18
2 4 8 16 32 62
3 6 12 24 48 98
4 8 16 32 64 210
5 10 20 40 80 350
6 12 24 48 96 450
7 14 28 56 112 602
8 16 32 64 128 762

with e.g, « = 1/2 as advocated in the previous section. That corre-
sponds to the first step of the algorithm, with zero foldifg,= 0.

(ii) (Assuming we are at step/ of the process.) Fold the parti-
cles in each dimension according to equation (58), resathpia
again on a periodic grid of siz&, but which probes a physical
size twice smaller than in the previous stépy+1 = La/2 =
Lo/2M*! (Lo = L). MeasureP? (k) up to« times the Nyquist
frequency of that grid, which in practice corresponds tacewihe
Nyquist frequency of the grid of the previous stég.y' ™) =
kD = 2MH1

(i) Repeat step (ii), until the valuek)’ ™" is as large as re-
quired, for instance until the softening scale of the sirtiofahas
been reached.

We now have a set of values of measurements of the power spec-
trum for a number of ranges of valuesfoés for instance illustrated

by Table 3. These ranges overlap from one folding to anothés:
can be used to check for systematic errors on the measurement
Indeed, for one value df, there can be several measurements of
P(k). One has, for each folding, to choose the range of valués of
that contribute to the final measurement. To do that, oneddbitk

of compromising between the statistical errors, which argdr
whenk is small, and the unknown systematics brought by alias-
ing, which can become significant whérapproaches the Nyquist
frequency of the grid. The choice of compromise depends®oith
der N of the Fourier-Taylor transform considered. It is thearally
possible to find an “optimal” compromise between the paramet

the orderN and the resolution of the gridy,, to maintain the er-
rors on the measurement Bf k) below a given limit at a minimum
computational cost. However, such a project would go beybed
scope of this paper. Our strategy here is rather to make Batete
unknown systematics due to aliasing are negligible conup@arthe
statistical error given b.g, equation (43). We therefore advocate

This means that we now have access to a doubly-large range ofae = 1/2 and sufficiently high order Fourier-Taylor approximation.

integer values ok L/(27) by applying Fourier-Taylor method on
simple foldings of the particle distribution. Note that joelicity is
not assumed here, except that only ihiegervalues ofkL/(27)
are available. Such a set is complete in the periodic case.

Obviously this folding trick can be generalized to highenmu
ber of dimensions. In that case, the number of Fourier toanss
needed to perform the calculations increases by a faftoeach
time a factor 2 is gained in the dynamic range of availableesl
of k, exactly as in equations (54) and (55), as expected. However
we can restrict here to the simplest folding given by equefkn)
and ignore foldings involving equation (60). This meang the
are sparse-sampling-ourier space, increasing the dynamic range
by a factor two each time, maintaining the computationaktiofh
the same order at each step of the procedufrable 3 shows the list
of values ofk sampled in one dimension in a simple case, where
N, = 16. Note that the number of available modes per sampled
value ofk remains the same as for the original sampling: the error
on the rough power spectrum shall remain bounded as we discus
later below.

In practice the folding algorithm works as follows:

(i) Firstapply the Fourier-Taylor estimator on the oridiparti-
cle distribution sampled on the periodic grid of sixg, and mea-

sureP<N)(l~c) up to some fraction of the Nyquist frequeney.y,

est

8 Some of the possible caveats of such a sparse sampling atessksl in
Jenkins et al. (1998).
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For instance, the third-order transform should in practoewell
enough forN, of the order or smaller than a thousand.

Figure 8 illustrates how the measurements behave over the
rangekL/(27) € [1,8192] when one changes the grid resolution
from Ny = 64 to Ny = 512 in the folding algorithm. In order
to see the details better, the function represented on emodl 5
P®(k)/Ppp(k), wherePpp (k) is the function given by the non-
linear ansatz of Peacock & Dodds (1996). This figure is supple
mented with Fig. 9, which gives for each case consideredgn&-i
the errors onPe(ft)(lc), in the following way to make the plot read-
able: the thin curve (alternatively dotted and continucausy the
thick grey curves on the upper part of Fig. 9 correspond taequ
tions (40) and (43) respectively. However these equatidrestpe
error on the estimate of the power spectrum plus the shoé rois-
tribution of the particles. In order to get an estimate ofgtagistical
error onP(k), we compute an expression similar to equation (44),
but as follows:

ap _

PPD(k) =4 l/Np
iz _—

Prp (k)

That way, the plot is readable because we replace a noisy func
tion with its smooth gues®rp(k).° The lower part of the same

{E(k) or Ec(k)} x (63)

9 If the error on the rough power spectrum is given by
2
<APrough) _ EQ’

(64)
P, rough
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Figure 8. The power spectrum measured at present time in our GBMICGET sample, with the estimatd?éi) (k) (equation 52), using the folding algorithm
explained in the main text to (sparsely) probe the full dyitarangek = [1,8192]. To see the details better, the measurements have beeedlividthe
analytical proxyPpp (k) of Peacock & Dodds (1996). Each panel corresponds to a clodittee grid resolution, Vg, used to perform the Fourier-Taylor
algorithm in combination with the folding of the particlestiibution. The measurements are represented by the thie,cwhile the shaded region gives the
statistical error estimated with equation (40). The dasheue corresponds to the shot noise of the particles. Thedloertical line indicates the softening
lengthe: above that scalé? (k) should present a cut-off, which is clearly visible when tigmal-to-noise ratio is large enough, seg, the lower-right panel.

figure shows the residual function due to aliasidgy(k){1 +
1/[Ppp(k)Np|} (thick grey, dotted, dashed and solid lines, which
correspond taV, = 64, 128, 256 and 512, respectively), as well

then it follows that the error on the shot-noise-correctetvgr spectrum
reads as in equation (44) but with the tetnC'(k) replaced withE2. To
obtain a smooth estimate of the errors plotted on Fig. 9, barce is to re-
place P (k) in equation (44) with its theoretical prox¥pp (k). After sim-
ple algebraic calculations, one just obtains equation. (63hat framework,
the expressions for the theoretical and measured residuatbe power-
spectrum estimator can also be written naturally as expthin the main
text and plotted on Fig. 9.

as its measurement faV, = 128 (symbols). In the last case,
the function displayed on Fig. 9 [ (k) — P(k)]/Pen (k). It

est
should roughly follow the dotted line, which is indeed thesea
Note that a residuaf (k) = R3(k){1 + 1/[Ppp(k)N,]} assumes
Pmax = Ppp(k). SincePpp (k) is a decreasing function @f, the
function f(k) is expected to overestimate the true residdabn

the contrary, the symbols tend to lie above the “theory”, thig

10 We assume here the framework of the assumption$ &if For a per-
turbed grid, as studied i§14.3, the residual are expected to be much larger,
as illustrated by the lower panel of Fig. 7.

(© 0000 RAS, MNRASDO0, 000-000
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Figure 9. The statistical error on the measuremenf{f) when using the folding procedure explained in the main fElxe upper curves correspond to the
estimated statistical relative error i) (k) (butthese curves would not change significantly for othéresof the orde/N of the Fourier-Taylor expansion):
for various values ofVy as indicated on the plot, the thin (alternatively dotted aalill) and the thick grey curves correspond respectivelggs. (40) and
(43) for estimating the errors on the measuremer® 0f) + 1/N},. The function represented here is given in fact by equai®) §s discussed in detail in the
main text. For comparison, the lower curves give an estiroathe expected residual due to aliasing effects on the pepectrum, while the symbol show

the measurement of these residuals/igr = 128.

disagreement is clearly within statistical errors, whishnihat re-
ally matters for the point made here.

The mid-range values df in Fig. 9 show that increasing the
resolution N, of the grid by a factor of two improves the over-
all signal-to-noise ratio by a fact@*”~1/2 because’(k) scales
roughly like kP ~*. This is illustrated as well by Fig. 8, where the
small fluctuations of the measured spectrum at intermedatees
of k decrease wheiV, increases. At smak, however, the errors
are independent o, as there are fewer and fewer statistically
independent modes when one approaches the size of the bat, wh
ever the resolution of the grid used to perform the measunésne
At largek, one is dominated by the shot noise of the particles: when
P(k) < 1/N,, as indicated by the dashed line on Figs. 8 and 9, the
error on P(k) increases dramatically, to become arbitrarily large
when P (k) is subject to the hard cut-off due to the softening of the
forces at scales smaller thanas indicated by the dotted line on
the figures. Indeed, in the folding method proposed herejoae

(© 0000 RAS, MNRASD00, 000—-000

tually able to control the error on the measurement of thentitya
P(k) + 1/Ny, and not on the measurement®fk).

6 SUMMARY

In this paper we presented a method to estimate Fourier nafdes
a particle distribution, based on a Taylor expansion of tig®ho-
metric functions. This idea is inspired from the work of Ansien

& Dahleh (1996). We paid particular attention to the measaet

of the power spectrun® (k) when the point distribution is the lo-
cal Poisson realization of a stationary random field, whepiet
expressions for the ensemble average of a naive rough éstiofa
P(k) were derived. This allowed us to accurately determine the bi
ases induced by discreteness and by the Taylor expansiaah wh
can be easily corrected for, and to quantify the effects iafsaig,
which are controlled by the ordely, of the expansion. Our calcu-
lations show that effects of aliasing decrease quickly withes il-
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lustrated by Table 2. The analytic calculations were cont&d suc-
cessfully with a cosmologicaV-body simulation. We also studied
how the deviations from local Poisson behavior influencentlea-
surements, such as in initial conditions of the simulatiwhjch
correspond to a perturbed grid pattern. We proposed an sedbia
estimator which is nearly free of aliasing, and which stétorms
well for the perturbed grid. The accuracy of this estimasothius
entirely controlled by the statistical errors, which arisem the fi-

nite number of sampled modes. We also showed how the dynamica

range in Fourier space could be arbitrarily increased wkekeping
the statistical error bounded, by appropriate foldingshefparticle
distribution, as suggested by Jenkins et al. (1998). Natk thile
the Fourier-Taylor method was applied here to the powertspec
it can be easily generalized to higher order estimatorsinfsiance
to measure the bispectrum or the trispectrum of the digiohu

The Fourier-Taylor module as well as the associated power

spectrum estimator tool we propose is available as an F¥agac
powres, atww. pr oj et - hori zon. fr or on request from the
authors. It works with th&ADGET file format.
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APPENDIX A: ENSEMBLE AVERAGES WITH VARIOUS
ASSUMPTIONS

There are subtleties that arise when it comes to performisgm-
ble averages. While this has been widely discussed in gralitre

(see,e.g, Peebles 1980), we address the issue briefly again here.(p(z)p(y)) = 1 + &(z, y).

Given a distribution ofV,, particles in a (hyper)cubical volumié,
which is a discrete realization of an underlying random tardus
field, p(z) (of average unity), one measures the two quantities

Np Np
F=Y f@), G=)Y_ g, (A1)

wheref andg are some functions. The question we want to address

here is how to compute the ensemble averagé'Gf over many
realizations of the underlying distribution, given somesmaints.
There are two relevant cases to consider:

(i) The “realistic” case: V is a subvolume of a realization of
much larger volume. In that case ensemble average allowsithe

average. Lep(n,z) be the probability of having: particles in
an infinitesimal cell at position. Then, the local random process
characterizing the realization of the smooth field in a distiion

of particles gives, assuming thgt) = 1,

p(l,l‘) =
p(07 I) =

The sum (A1) can be rewritten over the infinitesimal cellbeléed
asj and at positions;,

néVp(z),
1—7adéVp(x).

(A3)
(A4)

F:Zn]-f(cj), G:ang(cj). (A5)
So ] ]
(F) = wa(cj» = Z sV (p) f(cs), (A6)
which gij/es in integral ncjtation
(Fy=n / dPzf(z), (A7)
and Iikewi:e forG. The productF'G, is then
FG = "nif(c;)gle;) + Y nymyi f(e;)g(ch). (8)

J J#3’
(FG) = n /V F@)g(@)d%s +

+ 0’ /V [1+&(z, )] f(2)g(y)d°zdy.  (A9)

In this equation, we have defined the two-point correlatiorcfion
(A10)

In this paper, we assume stationaryz, y) = £(z —y). Equation
(A9) is the basis that we used for the calculation of the efdeav-
erage ofP") (k) in § 3.1, and from which we derive equation (24).

A2 The N-body simulation case: constrained ensemble
average

Since N, is now fixed, the method of infinitesimal cells does not
work anymore, at least not straightforwardly. However, il
remains valid is that the probability of having a particlgasition

x is proportional top(x). More generally, the probability density
of having a set of particles at positiofisy, - - -, zn, ), given the

ber of particleslV,, to vary, as well as the average density over the realizationp(z), is given by

volume: the quantity
(A2)

is allowed to fluctuate around the mean.
(i) The N-body simulation standard caseé that case/V, is
fixed, as wellap(V) = 1.

Al The “realistic” case: unconstrained ensemble average

Following Peebles (1980), we dividé into infinitesimal cells of
volume §V, such that they contain zero or one patrticle. hetbe
the number of particles they contain, and= (n) its ensemble

p(l'l,"',l'Np):%P(wl)"'P(pr), (All)

remembering thap(V') (equation A2) is now constrained to be
unity for each realization of the ensemble average. Then

Nl"
Z </f(37i)p($1, e ',pr)del s dDa:Np>

% [ st

after performing the integrals and then ensemble averagisigg
(p) = 1. As a result we converge again to equation (A7), since

(F)

(A12)

(© 0000 RAS, MNRASDO0, 000-000
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7 = Np/V . However, the calculation gfF'G) gives,

(rey = / f@)g()aPe + el =D

« [ a+eeali@emaady a1
Vv

using the definition (A10). The second term of this expressiié-

fers from second term of equation (A9), by a factdf, — 1)/Np.

In addition, the constraint(V) = 1 for each realization reads,

after ensemble averaging,

/ &(z,y)dPzdPy = 0. (A14)
\%

These differences impose, in particular, that the fundaatemode,
P<N>(0) is always exactly unity for aiv-body simulation in our
choices of units, unlike equation (24), which was computsidg!
the method explained in Appendix Al.

APPENDIX B: SOME USEFUL ANALYTIC EXPRESSIONS

The calculation of the number, (k, M) (equation 23) can be per-
formed easily by using the multinomial theorem:

n!
7X
Y oIcoxa

q1+--+gp=n

Kn(k, M) =

XNy (K1, M1) X -+ X ngp, (kp, MD), (B1)
where
1/2
1 (k, M) :/ exp[—1 (k + 27 M)A] (I kA)"dA  (B2)
—1/2

is similar to x, (k, M) but is computed on a scalar instead of a
vector: forD = 1, nn(k, M) = kn(k, M). Note thatn, (k, M)
can be computed using the following recursion:

no(k, M) = (=1)M sin(k/2)/[(k + 2n M) /2], (B3)

(=M
(ks M) = 5 37

— I "exp(I k/2)} +

(k/2)" T{I" exp(—I k/2) —

nk
k+ 27rM77"_1

The final result can be expressed as

(k, M). (B4)

2(—1)ME"n)
b M) = G ey

n/2

x {sin(k/Q) ((_211))! (k)2 + 7 M)? -

=0

~

(n—1)/2

— cos(k/2) Y ( )l!(k/2+7rM)21“}.

— I+1)

—
—_

(BS)

[\]

APPENDIX C: THE POWER SPECTRUM OF A
PERTURBED GRID

We consider here the case of a three-dimensional grid patter
particles perturbed by a Gaussian random displacementhwi
curl-free, stationary and isotropic.

(© 0000 RAS, MNRASD00, 000—-000

Isotropy and stationarity imply that the joint probabildistri-
bution of displacement®; = P(q1), P> = P(q2) depends only
ongqi2 = |q1 — ¢2| and gives

27 «
@r)P (1= 777"
P+ Ps —20P1 - P2
202(1—p%)/3 |’

L(P1, P2, q12)

X exp |— (C1)

where
o® = (P{)=(P3), plq2)o” = (P1-Pa), (C2)

are the variance of the displacement field and its correidtioc-
tion, respectively. The Fourier modes of the perturbed gattern
are given by equation (49). The constrained ensemble awarfig
the power spectrum estimate (keepiNg fixed; see Appendix A2)
is

1

{0k0-k) = op(0) + =~

1
+ Nz > expllk- (g1 — g2)] X

q17q2

x(exp{Ik - [P(q1) — P(g2)]}). (C3)
= 0(0) + 3+ 52 O expllk- (@~ )] x

a17#q2

X /d3771d3772£(771,'Pz,qu)exp[[k - (P1—P2)]. (C4)

Notice that the offset has disappeared from this expression, as ex-

pected. After some algebra, one finds equation (50), whereith
agonal term has been trivially integrated with the off-diagl one.
This expression gives the discrete version of the Zel'doyiower
spectrum (see Schneider & Bartelmann, 1995, for the cootisu
limit).
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